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Abstract: In a number of applied problems (immunology, epidemiology, virology, etc.), there is a need to study the
dynamics of the trajectories of the compositions of the Lotka–Volterra mappings. In this paper, some variants of these
compositions are considered, in particular, the dynamics of the trajectories of the compositions of the Lotka–Volterra
mappings acting in a two-dimensional simplex, with transitive tournaments, which can be applied in the study of these
processes. Cards of fixed points are constructed for compositions and the characters of fixed points are studied.
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1. Introduction
The task of the qualitative theory of dynamical systems is to develop methods that allow us to study the behavior
of the trajectories of the system in the entire domain of its task (for discrete dynamical systems without system
integration). The main step of these studies is to study the behavior of the trajectories of the system in the
vicinity of each of its singular points. It is known that the founders of the qualitative theory of differential
equations, i.e. continuous dynamical systems, are the famous French mathematician Jules Henri Poincare
(1854–1912) and the famous Russian mathematician Alexander Mikhailovich Lyapunov (1857–1918). These
scientists are responsible for the formulation of initial tasks, fruitful ideas for their solutions, and fundamental
concrete results that have received wide resonance in the scientific world. Their first followers were I. Bendikson
(1861–1920), A. Dulak (1870–1955), O. Perron (1880–1975), D. Birkhoff (1884–1944), as well as V. V. Stepanov
(1889–1950), I. G. Petrovsky (1901–1973), N. G. Chetaev (1902-1959), and others [1].

It is known that until the beginning of the 20th century, the field of natural science that fed the qualitative
theory of differential equations was celestial mechanics [1], but by the beginning of the 20th century, the situation
had changed significantly. The theory of dynamical systems began to be applied in various fields of physics,
mechanics, optics, acoustics, as well as in population genetics, epidemiology, and environmental problems.
Despite numerous works in the theory of dynamical systems, quite a lot of questions remain open in this area.
In this paper, we consider the dynamics of the trajectories of compositions of quadratic stochastic Lotka–Volterra
maps acting in a two-dimensional simplex.

LetV : Rm → Rm be a quadratic stochastic operator, defined by specifying a cubic matrix {Pij,k}i,j,k=1,m,

whose coefficients satisfy the conditions [4, 5].
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Pij,k = Pji,k ≥ 0,

m∑
k=1

Pij,k = 1

and it works according to the formulas:

V x =

 m∑
i,j=1

Pij,1xixj ,

m∑
i,j=1

Pij,2xixj , ...,

m∑
i,j=1

Pij,mxixj

 , (1.1)

where x = (x1, x2, ..., xm) ∈ Rm .

It is known that the quadratic stochastic operator leaves the hyperplane invariant H =

{
x ∈ Rm :

m∑
i=1

xi = 1

}
,

as well as the basic simplex Sm−1 =

{
x ∈ Rm : xi ≥ 0,

m∑
i=1

xi = 1

}
.

Definition 1.1 [4] A quadratic stochastic operator is called a Lotka–Volterra mapping if Pij,k = 0 by k /∈ {i, j} .

Then [4] the Lotka–Volterra mapping, acting in the simplex Sm−1, can always be represented as

x′
k = xk(1 +

m∑
i=1

akixi), k = 1,m, (1.2)

aki = −aik, |aki| ≤ 1 .

Theorem 1.2 [6] The mapping V : Sm−1 → Sm−1, defined by formula (1.2), is a homeomorphism, and for
| aki |< 1 for all k, i = 1,m − by a diffeomorphism of the simplex Sm−1 .

For an arbitrary starting point x0 ∈ Sm−1 the sequence {x(n)} ⊂ Sm−1, defined by the recurrent formula

x(n+1) = V x(n), n = 0, 1, ...,

it is called a trajectory starting from a point x0.

Through ω(x0) = {x0, x(1), ...}′ , we denote the set of limit points of a positive trajectory. Obviously,
ω(x0) − is a nonempty closed and invariant subset Sm−1 , i.e. V (ω(x0)) ⊂ ω(x0).

Since V − is a homeomorphism for |aki| ≤ 1, there is a negative trajectory for any inner point x0 ∈ Sm−1

of the simplex
x(−n−1) = V −1(x(−n)), n = 0, 1, ... .

Through α(x0) = {x0, x(−1), ..., x(−n), ..., }′ , denote the set of limit points of the negative trajectory.
For the further presentation of the work, we will need several definitions from graph theory [9, 10, 12].

Definition 1.3 [9] The graph G − is a finite nonempty set W containing p vertices and a given set E

containing q disordered pairs of distinct vertices from W.
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Each pair of x = {u, v} vertices in E will be called an edge of the graph G , and this will mean that x connects
u and v. We will write x = uv , this will mean that u and v – adjacent vertices. The vertex u and the edge x

are incident, as are v and x.

If two different edges x and y are incident to the same vertex, then they are called adjacent.
A graph with p vertices and q edges is called a (p, q) -graph.
It is clear from the definitions that there can be no loops in the graph, that is, edges connecting the

vertices with themselves.

Definition 1.4 [9] A directed graph or digraph D − is a finite nonempty set of vertices and a given set of
ordered pairs of distinct vertices.

The elements of the set E are called oriented edges or arcs.

Definition 1.5 Pairs of vertices that are connected by more than one edge are called multiples.

There are no loops and multiple arcs in the digraph.

Definition 1.6 A directed graph is a digraph in which no pair of vertices is connected by a symmetric pair of
arcs.

It follows from the definition that every orientation of a graph generates a directed graph.
Each mapping we consider corresponds to a tournament; therefore, along with system (1.2), we consider

a complete graph called a tournament and introduce it as follows:
Let A = (aki) – skew-symmetric matrix, i.e. A′ = −A , where A′ − the matrix transposed to A [7].
Assuming that aki ̸= 0 for k ̸= i, we construct a tournament Tm with vertices 1, 2, ...,m as follows: if

aki > 0 , then we connect the vertices k and i an arrow (edge) directed from i–that vertex to k–that vertex.
Next, the constructed tournament Tm will be called the tournament of the dynamical system (1.2) with the
skew-symmetric matrix A = (aki) .

The transitivity of the tournament means that any subtournament of this tournament is not strong
[2, 3, 8].

The purpose of this work is to study the dynamics of the composition of Lotka–Volterra mappings acting
in S2 with transitive tournaments, with one mutually-inversely directed edge. It is known [5, 6] that when the
Lotka–Volterra mapping is in general position, we can introduce the concept of a tournament, and to study the
dynamics of the behavior of the trajectories of the composition, we will introduce the concept of a map of fixed
points. To do this, we need the following Lemma.

Lemma 1.7 [6] Let A = (aki) – skew-symmetric matrix. Then the solution of the system of linear inequalities

P = {x ∈ Sm−1 :

m∑
i=1

akixi ≥ 0, k = 1,m}

and

Q = {x ∈ Sm−1 :

m∑
i=1

akixi ≤ 0, k = 1,m}

– convex nonempty polyhedra.
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2. Main results
Let two Lotka–Volterra mappings acting in a two-dimensional simplex S2 :

V1 :


x′
1 = x1(1 + a12x2 + a13x3),

x′
2 = x2(1− a12x1 − a23x3),

x′
3 = x3(1− a13x1 + a23x2),

V2 :


x′
1 = x1(1 + b12x2 + b13x3),

x′
2 = x2(1− b12x1 + b23x3),

x′
3 = x3(1− b13x1 − b23x2),

(2.1)

here |aki| ≤ 1, aki = −aik, |bki| ≤ 1, bki = −bik,
3∑

i=1

xi = 1 .

Consider the composition of these mappings. Each of these mappings is an automorphism of the simplex,
and it is also obvious from this that the composition V1 ◦ V2 is an automorphism of the simplex S2, and it is
representable as:

V1 ◦ V2 :


x′
1 = x1(1 + f1(x2, x3)),

x′
2 = x2(1 + f2(x1, x3)),

x′
3 = x3(1 + f3(x1, x2)),

(2.2)

where the functions f1, f2, f3 are polynomials of the third degree of x1, x2, x3, satisfying the condition

x1 · f1 + x2 · f2 + x3 · f3 ≡ 0.

If we describe the system (2.2) in detail, we will get the following picture:

V1 ◦ V2 :


x′
1 = x1(1 + b12x2 + b13x3)(1 + a12x2(1− b12x1 + b23x3) + a13x3(1− b13x1 − b23x2)),

x′
2 = x2(1− b12x1 + b23x3)(1− a12x1(1 + b12x2 + b13x3)− a23x3(1− b13x1 − b23x2)),

x′
3 = x3(1− b13x1 − b23x2)(1− a13x1(1 + b12x2 + b13x3) + a23x2(1− b12x1 + b23x3)).

(2.3)

V2 ◦ V1 :


x′
1 = x1(1 + a12x2 + a13x3)(1 + b12x2(1− a12x1 − a23x3) + b13x3(1− a13x1 + a23x2)),

x′
2 = x2(1− a12x1 − a23x3)(1− b12x1(1 + a12x2 + a13x3) + b23x3(1− a13x1 + a23x2)),

x′
3 = x3(1− a13x1 + a23x2)(1− b13x1(1 + a12x2 + a13x3)− b23x2(1− a12x1 − a23x3)).

(2.4)

Let I = {1, ...,m} and α ⊂ I , X = {x(α) : α ⊂ I}− a set of fixed points V . Since V : Sm−1 → Sm−1 is
continuous, and Sm−1 is a convex compact, then according to the Bohl-Brauer theorem, the set of fixed points
V is nonempty. We will say that the fixed points are x(α) and x(β) form a pair (p, q), if there exists a face
Γγ such that γ ⊃ α ∪ β , and the are satisfied inequalities Aγx(α) ≥ 0, Aγx(β) ≤ 0 (according to the Lemma
1.7). In this case, x(α) let us call p a point, and x(β) – q a point. Now we will represent the elements of X

as points on the plane and if x(α) and x(β) form the pair of (p, q), then we connect them with an arc, that is,
an arrow directed from x(α) to x(β) . The resulting oriented graph is called the card of fixed points of the V

mapping.
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Lemma 2.1 The card of fixed points of the composition of the Lotka–Volterra mappings V1 ◦ V2 and V2 ◦ V1 ,
acting in S2 , is isomorphic to one of the following three cards, shown in Figure 1.

Figure 1. Figure 1. Card of fixed points of the composition V1 ◦ V2 and V2 ◦ V1, acting in S2.

To prove the Lemma, we will consider several special cases of compositions of Lotka–Volterra mappings
defined by the equalities (2.4). The generalized case requires rather capacious calculations, as it is apparent
from expressions (2.4) that six parameters are obtained with arbitrary coefficients in the system. For each case,
we have obtained theorems and statements with which we will prove Lemma 2.1. Since the picture of the phase
portrait turns out to be interesting, let us consider the dynamics of the composition first with the introduction
of one coefficient. For example,

V3 :


x′ = x(1 + ay + z),

y′ = y(1− ax− z),

z′ = z(1− x+ y),

V4 :


x′ = x(1 + y + z),

y′ = y(1− x+ z),

z′ = z(1− x− y),

(2.5)

The composition of these mappings looks like as follows:

V3 ◦ V4 :


x′ = x(1 + y + z)(1 + ay(1− x+ z) + z(1− x− y)),

y′ = y(1− x+ z)(1− ax(1 + y + z)− z(1− x− y)),

z′ = z(1− x− y)(1− x(1 + y + z) + y(1− x+ z)),

(2.6)

and

V4 ◦ V3 :


x′ = x(1 + ay + z)(1 + y(1− ax− z) + z(1− x+ y)),

y′ = y(1− ax− z)(1− x(1 + ay + z) + z(1− x+ y)),

z′ = z(1− x+ y)(1− x(1 + ay + z)− y(1− ax− z)),

(2.7)

where the coefficient is 0 < a ≤ 1 .

For qualitative study of the dynamics of the trajectory of the internal points of the composition V3 ◦ V4

and V4 ◦ V3 , we find the fixed points of these compositions. First, we find a fixed point belonging to the edge
Γ23. To do this, in both cases, we take x = 0 and get the following systems of equations, respectively:


1 = (1 + z)(1− z(1− y)),

1 = (1− y)(1 + y(1 + z)),

1 = y + z,

,


1 = (1− z)(1 + z(1 + y)),

1 = (1 + y)(1− y(1− z)),

1 = y + z.
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Solving the system data for composition (7), i.e. for V3 ◦ V4 , we get a fixed point

A0

(
0;

3−
√
5

2
;

√
5− 1

2

)
,

and for the composition V4 ◦ V3 , the fixed point has the following form:

A1

(
0;

√
5− 1

2
;
3−

√
5

2

)
.

Apart from to these fixed points for both compositions, all vertices of the simplex are stored as fixed points, i.e.

e1(1; 0; 0), e2(0; 1, 0), e3(0; 0; 1).

In order to study the character of fixed points, we will use the Jacobi matrix and its spectrum. We will
find the eigenvalues of the Jacobi matrix by solving the equation:

|J(x)− λI| = 0. (2.8)

By the values of the eigenvalues, we can describe the character of fixed points. To do this, we first
introduce definitions concerning the nature of fixed points [3].

Now, in order to investigate the character of the fixed points of the composition, we will introduce the
following definitions:

Definition 2.2 A fixed point is called an attracting point (attractor) if the spectrum of the Jacobian, i.e. the
solution of equation (2.8), is modulo less than one.

Definition 2.3 A fixed point is called repulsive (repeller) if the spectrum of the Jacobian modulo is greater than
one.

Definition 2.4 A fixed point is called a saddle point (i.e. it is neither a repeller nor an attractor) if among
the solutions of equation (2.8) there are both modulo values greater than 1 and modulo values less than 1.

Since we study hyperbolic systems, we do not consider the case when the eigenvalues are modulo 1.
The Jacobi matrix of operator (2.6) has the following form:

J(V3 ◦ V4) =

 A B C

D K L

M N O

 ,

here

A = x(1 + y + z)(−ay − z) + (1 + y + z)(ay(1− x+ z) + z(1− x− y) + 1),

B = x(1 + y + z)(a(1− x+ z)− z) + x(ay(1− x+ z) + z(1− x− y) + 1),

C = x(1 + y + z)(1− x− y + ay) + x(ay(1− x+ z) + z(1− x− y) + 1),

6
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D = y(1− x+ z)(z − a(1 + y + z))− y(−ax(1 + y + z) + z(x+ y − 1) + 1),

K = y(1− x+ z)(z − ax) + (1− x+ z)(−ax(1 + y + z) + z(x+ y − 1) + 1),

L = y(1− x+ z)(−ax+ x+ y − 1) + y(−ax(1 + y + z) + z(x+ y − 1) + 1),

M = z(1− x− y)(−2y − z − 1)− z(y(1− x+ z)− x(1 + y + z) + 1),

N = z(1− x− y)(1− 2x+ z)− z(y(1− x+ z)− x(1 + y + z) + 1),

O = z(1− x− y)(y − x) + (1− x− y)(y(1− x+ z)− x(1 + y + z) + 1).

The Jacobian of this matrix is represented as a cubic equation:

|J(V3 ◦ V4)− λI| =

∣∣∣∣∣∣∣
A− λ B C

D K − λ L

M N O − λ

∣∣∣∣∣∣∣ = 0.

−λ3+(A+K+O)λ2− (AK+OA−MC−LN −DB)λ+AKO+DNC+BLM −MCK−ALN −OBD = 0,

where J(V3 ◦ V4) is the Jacobi matrix of operator (2.6), I is the unit matrix, and λ is the eigenvalue of the
Jacobi matrix.

For a fixed point A0, the solution of this cubic equation looks like this:

λ1 = 1, λ2 =

(
a
√
5− a+

√
2(3−

√
5)(a+ 1)2 − 3

√
5 + 11

)
2

, λ3 =

(
a
√
5− a−

√
2(3−

√
5)(a+ 1)2 − 3

√
5 + 11

)
2

.

Now we introduce the Jacobi matrix for operator (2.7):

J(V4 ◦ V3) =

 A′ B′ C ′

D′ K ′ L′

M ′ N ′ O′

 ,

where

A′ = x(−ay − z)(1 + ay + z) + (1 + ay + z)(1 + y(1− ax− z) + z(1− x+ y)),

B′ = x(1− ax)(1 + ay + z) + ax(1 + y(1− ax− z) + z(1− x+ y)),

C ′ = x(1− x)(1 + ay + z) + x(1 + y(1− ax− z) + z(1− x+ y)),

D′ = y(1− ax− z)(1− ay − 2z)− ay(1− x(1 + ay + z) + z(1− x+ y)),

K ′ = y(1− ax− z)(z − ax) + (1− ax− z)(1− x(1 + ay + z) + z(1− x+ y)),

L′ = y(1− 2x+ y)(1− ax− z)− y(1− x(1 + ay + z) + z(1− x+ y)),

M ′ = z(−1− z)(1− x+ y)− z(1− y(1− ax− z)− x(1 + ay + z)),

N ′ = z(z − 1)(1− x+ y) + z(1− y(1− ax− z)− x(1 + ay + z)),
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O′ = z(y − x)(1− x+ y) + (1− x+ y)(1− y(1− ax− z)− x(1 + ay + z)).

The Jacobian of operator (2.7) is also represented by the cubic equation:

|J(V4 ◦ V3)− λI| =

∣∣∣∣∣∣∣
A′ − λ B′ C ′

D′ K ′ − λ L′

M ′ N ′ O′ − λ

∣∣∣∣∣∣∣ = 0.

−λ3+(A′+K ′+O′)λ2−(A′K ′+O′A′−M ′C ′−L′N ′−D′B′)λ+A′K ′O′+D′N ′C ′+B′L′M ′−M ′C ′K ′−A′L′N ′−O′B′D′ = 0.

Here also J(V4 ◦ V3) is the Jacobi matrix of operator (2.7), I is the unit matrix, and λ is the eigenvalue of the
Jacobi matrix. Eigenvalue, i.e. the solution of this equation at a fixed point A1 :

λ1 = 1, λ2 = 6− 5
√
5, λ3 = (1−

√
5)(−

√
5− a).

It is not difficult to see that for any value of the parameter a , the fixed point A1 is repulsive. As a result,
we constructively proved the statement:

The fixed point A0 of operator (2.6), and the fixed point A1 of operator (2.7), are repulsive fixed points,
for any parameter value 0 < a ≤ 1 .

Now let us move on to the mappings of Lotka–Volterra of the following types:

V5 :


x′ = x(1 + y + az),

y′ = y(1− x− z),

z′ = z(1− ax+ y).

V4 :


x′ = x(1 + y + z),

y′ = y(1− x+ z),

z′ = z(1− x− y).

(2.9)

The compositions of these operators have the following form:

V5 ◦ V4 :


x′ = x(1 + y + z)(1 + y(1− x+ z) + az(1− x− y)),

y′ = y(1− x+ z)(1− x(1 + y + z)− z(1− x− y)),

z′ = z(1− x− y)(1− ax(1 + y + z) + y(1− x+ z)).

(2.10)

V4 ◦ V5 :


x′ = x(1 + y + az)(1 + y(1− x− z) + z(1− ax+ y)),

y′ = y(1− x− z)(1− x(1 + y + az) + z(1− ax+ y)),

z′ = z(1− ax+ y)(1− x(1 + y + az)− y(1− x− z)).

(2.11)

Here 0 ≤ a ≤ 1.

For both compositions, there is a fixed point on the edge of Γ23 , for operator (2.10) the fixed point is a

point B0

(
0; 3−

√
5

2 ;
√
5−1
2

)
, for operator (2.11), a fixed point is a point B1

(
0;

√
5−1
2 ; 3−

√
5

2

)
.

Now, to find out the characters of these fixed points, for each of these compositions, we will make a
Jacobi matrix. For operator (2.10), the Jacobi matrix has the following form:

J(V5 ◦ V4) =

 A B C

D K L

M N O

 ,

8
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where

A = x(1 + y + z)(−az − y) + (1 + y + z)(1 + az(1− x− y) + y(1− x+ z)),

B = x(1 + y + z)(1− x− az) + x(1 + az(1− x− y) + y(1− x+ z)),

C = x(1 + y + z)(a(1− x− y) + y) + x(1 + az(1− x− y) + y(1− x+ z)),

D = y(−y − 1)(1− x+ z)− y(1− z(1− x− y)− x(1 + y + z)),

K = y(z − x)(1− x+ z) + (1− x+ z)(1− z(1− x− y)− x(1 + y + z)),

L = y(y − 1)(1− x+ z) + y(1 + z(x+ y − 1)− x(1 + y + z)),

M = z(1− x− y)(−a(1 + y + z)− y)− z(1− ax(1 + y + z) + y(1− x+ z)),

N = z(1− x− y)(1− ax− x+ z)− z(−ax(1 + y + z) + y(1− x+ z) + 1),

O = z(1− x− y)(y − ax) + (1− x− y)(1− ax(1 + y + z) + y(1− x+ z)).

The Jacobian of this matrix looks like this:

|J(V5 ◦ V4)− λI| =

∣∣∣∣∣∣∣
A− λ B C

D K − λ L

M N O − λ

∣∣∣∣∣∣∣ = 0.

−λ3+(A+K+O)λ2− (AK+OA−MC−LN −DB)λ+AKO+DNC+BLM −MCK−ALN −OBD = 0.

Here J(V5 ◦ V4) is the Jacobi matrix of the operator (2.10), I is the unit matrix, λ is the eigenvalue of the
Jacobi matrix. Eigenvalues, i.e. the solution of this equation at the point B0

λ1 = 1, λ2 = 6− 2
√
5, λ3 = (3−

√
5)a+

√
5 + 1.

For (2.11), the Jacobi matrix

J(V4 ◦ V5) =

 A′ B′ C ′

D′ K ′ L′

M ′ N ′ O′

 ,

where

A′ = x(−az − y)(1 + y + az) + (1 + y + az)(1 + y(1− x− z) + z(1− ax+ y)),

B′ = x(1− x)(1 + y + az) + x(1 + y(1− x− z) + z(1− ax+ y)),

C ′ = x(1− ax)(1 + y + az) + ax(1 + y(1− x− z) + z(1− ax+ y)),

D′ = y(1− x− z)(−1− y − 2az)− y(1− x(1 + az + y) + z(1− ax+ y)),

K ′ = y(1− x− z)(z − x) + (1− x− z)(1− x(1 + y + az) + z(1− ax+ y)),

L′ = y(1− x− z)(1− 2ax+ y)− y(1− x(1 + y + az) + z(1− ax+ y)),

M ′ = z(−1− az)(1− ax+ y)− az(1− y(1− x− z)− x(1 + y + az)),

9
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N ′ = z(z − 1)(1− ax+ y) + z(1− y(1− x− z)− x(1 + y + az)),

O′ = z(y − ax)(1− ax+ y) + (1− ax+ y)(1− y(1− x− z)− x(1 + y + az)).

Here the Jacobian will also be a cubic equation.

|J(V4 ◦ V5)− λI| =

∣∣∣∣∣∣∣
A′ − λ B′ C ′

D′ K ′ − λ L′

M ′ N ′ O′ − λ

∣∣∣∣∣∣∣ = 0.

−λ3+(A′+K ′+O′)λ2−(A′K ′+O′A′−M ′C ′−L′N ′−D′B′)λ+A′K ′O′+D′N ′C ′+B′L′M ′−M ′C ′K ′−A′L′N ′−O′B′D′ = 0.

Here, as in the previous cases, J(V4 ◦ V5) is the Jacobi matrix for (2.11), I is the unit matrix, and λ is the
eigenvalue of the Jacobi matrix.

Find the eigenvalues for a fixed point B1 :

λ1 = 1, λ2 = 6− 2
√
5, λ3 = (3−

√
5)a+

√
5 + 1.

As a result, similar to the previous case, we obtained confirmation:
The fixed point B0 of operator (2.10), and the fixed point B1 of operator (2.11), are repulsive fixed

points for any parameter value 0 < a ≤ 1 .
As a result, we proved that the card of fixed points of the Lotka–Volterra mappings V3◦V4, V4◦V3, V5◦V4 ,

and V4 ◦ V5 has the form as in Figure 1 case i).
Now let us move on to the following operators. Here we introduce a coefficient connecting mutually

inversely directed edges, i.e. 0 < a23 = a ≤ 1.

V6 :


x′ = x(1 + y + z),

y′ = y(1− x− az),

z′ = z(1− x+ ay).

V4 :


x′ = x(1 + y + z),

y′ = y(1− x+ z),

z′ = z(1− x− y).

(2.12)

The composition of these mappings has the following form:

V6 ◦ V4 :


x′ = x(1 + y + z)(1 + y(1− x+ z) + z(1− x− y)),

y′ = y(1− x+ z)(1− x(1 + y + z)− az(1− x− y)),

z′ = z(1− x− y)(1− x(1 + y + z) + ay(1− x+ z)).

(2.13)

V4 ◦ V6 :


x′ = x(1 + y + z)(1 + y(1− x− az) + z(1− x+ ay)),

y′ = y(1− x− az)(1− x(1 + y + z) + z(1− x+ ay)),

z′ = z(1− x+ ay)(1− x(1 + y + z)− y(1− x− az)).

(2.14)

Fixed points of compositions V6 ◦V4 and V4 ◦V6, belonging to the edge Γ23 , are found by solving systems
by taking x = 0 : 

1 = (1 + z)(1− az(1− y)),

1 = (1− y)(1 + ay(1 + z)),

1 = y + z.


1 = (1− az)(1 + z(1 + ay)),

1 = (1 + ay)(1− y(1− az)),

1 = y + z.

10



ESHMAMATOVA and YUSUPOV/Turk J Math

A fixed point belonging to the edge Γ23 of the mapping (2.13) – C0

(
0; 3

√
a−

√
a+4

2
√
a

;
√
a+4−

√
a

2
√
a

)
, a fixed

point for the mapping (2.14) – C1

(
0;

a+
√

a(a+4)−2

2a ;
a−

√
a(a+4)+2

2a

)
.

The Jacobi matrix for the mapping (2.13):

J(V6 ◦ V4) =

 A B C

D K L

M N O

 ,

where
A = x(1 + y + z)(−z − y) + (1 + y + z)(1 + z(1− x− y) + y(1− x+ z)),

B = x(1− x)(1 + y + z) + x(1 + z(1− x− y) + y(1− x+ z)),

C = x(1− x)(1 + y + z) + x(1 + z(1− x− y) + y(1− x+ z)),

D = y(1− x+ z)(az − y − z − 1)− y(1− az(1− x− y)− x(1 + y + z)),

K = y(az − x)(1− x+ z) + (1− x+ z)(1− az(1− x− y)− x(1 + y + z)),

L = y(−x+ z + 1)(−a(1− x− y)− x) + y(1− az(1− x− y)− x(1 + y + z)),

M = z(1− x− y)(−ay − y − z − 1)− z(1− x(1 + y + z) + ay(1− x+ z)),

N = z(1− x− y)(a(1− x+ z)− x)− z(1− x(1 + y + z) + ay(1− x+ z)),

O = z(1− x− y)(ay − x) + (1− x− y)(1− x(1 + y + z) + ay(1− x+ z)).

The Jacobian of this matrix is also a cubic equation

|J(V6 ◦ V4)− λI| =

∣∣∣∣∣∣∣
A− λ B C

D K − λ L

M N O − λ

∣∣∣∣∣∣∣ = 0.

−λ3+(A+K+O)λ2− (AK+OA−MC−LN −DB)λ+AKO+DNC+BLM −MCK−ALN −OBD = 0.

Here also J(V6 ◦ V4) -is the Jacobi matrix of the operator (2.13), I is the unit matrix, and λ is the eigenvalue
of the matrix.

Eigenvalues at a fixed point C0

λ1 = 1, λ2 = 4, λ3 =
2a2 − a

√
a

a+4 − a
√

(a+4)(2a+1)2

a + 10a− 4
√

a
a+4

2a
.

For (2.14) operator, the Jacobi matrix has the form:

J(V4 ◦ V6) =

 A′ B′ C ′

D′ K ′ L′

M ′ N ′ O′

 ,

11
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where

A′ = x(−z − y)(1 + y + z) + (1 + y + z)(1 + y(1− x− az) + z(1− x+ ay)),

B′ = x(1− x)(1 + y + z) + x(1 + y(1− x− az) + z(1− x+ ay)),

C ′ = x(1− x)(1 + y + z) + x(1 + y(1− x− az) + z(1− x+ ay)),

D′ = y(1− x− az)(−1− y − 2z)− y(1− x(1 + z + y) + z(1− x+ ay)),

K ′ = y(1− x− az)(az − x) + (1− x− az)(1− x(1 + y + z) + z(1− x+ ay)),

L′ = y(1− x− az)(1− 2x+ ay)− ay(1− x(1 + y + z) + z(1− x+ ay)),

M ′ = z(−1− z)(1− x+ ay)− z(1− y(1− x− az)− x(1 + y + z)),

N ′ = z(az − 1)(1− x+ ay) + az(1− y(1− x− az)− x(1 + y + z)),

O′ = z(ay − x)(1− x+ ay) + (1− x+ ay)(1− y(1− x− az)− x(1 + y + z)).

The Jacobian of this matrix looks like this:

|J(V4 ◦ V6)− λI| =

∣∣∣∣∣∣∣
A′ − λ B′ C ′

D′ K ′ − λ L′

M ′ N ′ O′ − λ

∣∣∣∣∣∣∣ = 0.

−λ3+(A′+K ′+O′)λ2−(A′K ′+O′A′−M ′C ′−L′N ′−D′B′)λ+A′K ′O′+D′N ′C ′+B′L′M ′−M ′C ′K ′−A′L′N ′−O′B′D′ = 0.

Here J(V4 ◦ V6) is the Jacobi matrix for (2.14), I is the unit matrix, and λ is the eigenvalue of the
matrix.

The eigenvalue at the point C1 :

λ1 = 4,

λ2 =
a2 +

√
2a4 − 2

√
a(a+ 4)a3 − 2a3 + 6

√
a(a+ 4)a2 − 23a2 + 8a

√
a(a+ 4)− 4a− a

√
a(a+ 4) + 6a−

√
a(a+ 4)

2a
,

λ3 =
a2 −

√
2a4 − 2

√
a(a+ 4)a3 − 2a3 + 6

√
a(a+ 4)a2 − 23a2 + 8a

√
a(a+ 4)− 4a− a

√
a(a+ 4) + 6a−

√
a(a+ 4)

2a
.

Theorem 2.5 Let the mappings be given V4 and V6.

1. Composite operators (2.13) and (2.14) have four fixed points each:

– these are the vertices of the simplex e1, e2, e3;

– fixed point belonging to the edge Γ23 to mapping (2.13) – C0

(
0; 3

√
a−

√
a+4

2
√
a

;
√
a+4−

√
a

2
√
a

)
, and for mapping

(2.14) – C1

(
0;

a+
√

a(a+4)−2

2a ;
a−

√
a(a+4)+2

2a

)
.

12
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2. Fixed point C0 by 0 < a < 1
12 (5

√
33− 27) and 1

2 < a < 1 is repulsive, and when 1
12 (5

√
33− 27) < a < 1

2 is
saddled.

3. Fixed point C1 by a = 1
2 and a ≈ 0, 14 is repulsive, and when a ∈ (0; 0, 14) ∪ (0, 14; 0, 5) ∪ (0, 5; 1) is

saddled.

Card of fixed points of the composition V6 ◦V4 at coefficient values 0 < a < 1
12 (5

√
33−27) and 1

2 < a < 1

has the form of a case i) from Figure 1, and in other cases has the form ii).
Card of fixed points of the composition V4 ◦ V6 at coefficient values a = 1

2 and a ≈ 0, 14 it has the form
from Figure 1 of the case i), and when a ∈ (0; 0, 14) ∪ (0, 14; 0, 5) ∪ (0, 5; 1) case iii).

Now we introduce the coefficients aki = a and show that this case is similar to the previous one:

V7 :


x′ = x(1 + ay + az),

y′ = y(1− ax− az),

z′ = z(1− ax+ ay).

V4 :


x′ = x(1 + y + z),

y′ = y(1− x+ z),

z′ = z(1− x− y).

(2.15)

The composition of these mappings is represented as:

V7 ◦ V4 :


x′ = x(1 + y + z)(1 + ay(1− x+ z) + az(1− x− y)),

y′ = y(1− x+ z)(1− ax(1 + y + z)− az(1− x− y)),

z′ = z(1− x− y)(1− ax(1 + y + z) + ay(1− x+ z)).

(2.16)

V4 ◦ V7 :


x′ = x(1 + ay + az)(1 + y(1− ax− az) + z(1− ax+ ay)),

y′ = y(1− ax− az)(1− x(1 + ay + az) + z(1− ax+ ay)),

z′ = z(1− ax+ ay)(1− x(1 + ay + az)− y(1− ax− az)).

(2.17)

Compositions V7 ◦ V4 and V4 ◦ V7 have four fixed points:
– these are the vertices of the simplex e1, e2, e3,

– point A0

(
0; 3

√
a−

√
a+4

2
√
a

;
√
a+4−

√
a

2
√
a

)
and a fixed point A1

(
0;

a+
√

a(a+4)−2

2a ;
a−

√
a(a+4)+2

2a

)
for each of

the operators, respectively.
If 0, 5 ≤ a ≤ 1, then the fixed point A0 ∈ S2, i.e. this point belongs to the edge A0 ∈ Γ23, this is the

case i). If 0 < a < 0, 5, then A0 /∈ S2 and the card looks like cases ii) or iii).

Theorem 2.6 For compositions V7 ◦V4 and V4 ◦V7 : if 0 < a < 1
12 (5

√
33−27), 1

2 < a < 1, then the fixed point

A0, accordingly, the fixed point A1, are repulsive if 1
12 (5

√
33− 27) < a < 1

2 , then they are saddled.

Proof The theorem can be proved, as in the previous cases, by analyzing the spectrum of the Jacobian, in
accordance with Definitions 2.2, 2.3, and 2.4. For the composition V7 ◦V4 , the eigenvalues of the Jacobi matrix
look like:

λ1 = 1, λ2 = 2(a+ 1), λ3 =
2a2 −

√
a

a+4a−
√

(a+4)(2a+1)2

a a+ 10a− 4
√

a
a+4

2a
.

For the composition V4 ◦ V7 , the eigenvalues are:

13
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λ1 = 1, λ2 = 2(a+ 1), λ3 = −a

√
a+ 4

a
+ a−

√
a+ 4

a
+ 5.

Now let us move on to a more general case:

V8 :


x′ = x(1 + ay + az),

y′ = y(1− ax− az),

z′ = z(1− ax+ ay).

V9 :


x′ = x(1 + by + bz),

y′ = y(1− bx+ bz),

z′ = z(1− bx− by).

(2.18)

here 0 < a, b ≤ 1.

Compositions of these mappings

V8 ◦ V9 :


x′ = x(1 + by + bz)(1 + ay(1− bx+ bz) + az(1− bx− by)),

y′ = y(1− bx+ bz)(1− ax(1 + by + bz)− az(1− bx− by)),

z′ = z(1− bx− by)(1− ax(1 + by + bz) + ay(1− bx+ bz)).

(2.19)

V9 ◦ V8 :


x′ = x(1 + ay + az)(1 + by(1− ax− az) + bz(1− ax+ ay)),

y′ = y(1− ax− az)(1− bx(1 + ay + az) + bz(1− ax+ ay)),

z′ = z(1− ax+ ay)(1− bx(1 + ay + az)− by(1− ax− az)).

(2.20)

Fixed points of operators V8 ◦ V9 and V9 ◦ V8, accordingly

A0

(
0;

b
√
a−

√
b(ab+ 4) + 2

√
a

2b
√
a

;
b
√
a+

√
b(ab+ 4)− 2

√
a

2b
√
a

)

and

A1

(
0;

a
√
b−

√
a(ab+ 4)− 2

√
b

2a
√
b

;
a
√
b+

√
a(ab+ 4) + 2

√
b

2a
√
b

)
.

Theorem 2.7 The fixed point A0 of the operator V8 ◦ V9, and also the fixed point A1 of the operator V9 ◦ V8

at b > a
a+1 are located on the edge of the simplex, and in other cases fixed points are located outside the simplex

and these points are repulsive at these coefficient values.

Proof To prove the theorem, we check the Jacobian spectra of skew-symmetric mapping matrices. The
eigenvalues of the mapping are equal to: V8 ◦ V9

λ1 = 1,

λ2 = (bx− by − bz − 1)(2abxy + 2abxz + ax− ay − az − 1),

λ3 = (bx+ by − bz − 1)(2abxy − 2abxz + ax− ay + az − 1).

The eigenvalues of the mapping V9 ◦ V8 are equal to:

λ1 = 1,

14
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λ2 = (ax− ay − az − 1)(2abxy + 2abxz + bx− by − bz − 1),

λ3 = (ax− ay + az − 1)(2abxz − 2abyz + bx+ by − bz − 1).

Substituting the coordinates of the fixed points, it is not difficult to observe that in both cases |λ2| > 1 and
|λ3| > 1 . This indicates that both fixed points are repulsive.

As a result, we proved that the fixed point cards of compositions V8 ◦ V9 and V9 ◦ V8 by b > a
a+1 and

0 < a ≤ 1 look like the case in Figure 1 i), while in other cases they look like ii).

3. Conclusion and discussion
In the paper, we study the full dynamics of the composition of the Lotka–Volterra mappings corresponding
to transitive tournaments. Fixed points are found, cards of fixed points are constructed, and also criteria
and characters of these fixed points are given. The study of the dynamics of the internal points of the
composition of discrete Lotka–Volterra mappings is relevant, as they can be viewed as a discrete model for
studying epidemiological situations, particularly the dynamics of the spread of sexually transmitted viral diseases
among the population. Each operator in the composition of these mappings represents the total population,
comprising both male and female populations. In [11, 13], continuous models for studying epidemiological
situations are considered. In [14], it is proposed to apply multicriteria group decision making (MCGDM) to
COVID-19 using bipolar soft ideal coarse sets with the help of two methods, but we believe that the discrete
model describes the picture more adequately than the continuous one. The epidemiological significance of the
composition will be described in detail in subsequent works.
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